Page 57 - ElectriCar Magazine
P. 57

Can Operate On Electricity Alone,
Gasoline Alone, Or A Mixture Of The Two The EPA provides a fuel economy estimate for gasoline-only operation and an estimate for electric-only or gas-and-electric operation
performance, and low self-discharge. Most components of LithiumIon batteries can be recycled, but the
cost of material recovery remains a challenge for the industry. Most of today’s PHEVs and EVs use LithiumIon batteries, though the exact chemistry often varies from that of consumer electronics batteries. Research and development are ongoing to reduce cost and extend their useful life. Nickel-Metal Hydride Batteries are used routinely in computer and medical equipment, offer reasonable specific energy and specific power capabilities. Nickel-metal hydride batteries have a much longer life cycle than lead-acid batteries and are safe and abuse tolerant. These batteries have been widely used in HEVs.
The main challenges with nickel-
metal hydride batteries are their high cost, high self-discharge and heat generation at high temperatures, and the need to control hydrogen loss. Lead-Acid Batteries can be designed
to be high power and are inexpensive, safe, and reliable. However, low specific energy, poor cold-temperature performance, and short calendar
and cycle life impede their use. Advanced high-power lead-acid batteries are being developed,
but these batteries are only used
in commercially available electric- drive vehicles for ancillary loads. Ultracapacitors store energy in
a polarized liquid between an electrode and an electrolyte. Energy storage capacity increases as the liquid’s surface area increases.
JUNE 2020
Ultracapacitors can provide vehicles additional power during acceleration and hill climbing and help recover braking energy. They may also be useful as secondary energy-storage devices in electric-drive vehicles because they help electrochemical batteries level load power.
Recycling Batteries for Electric-Drive Vehicles are relatively new to the U.S. auto market, so only a small number of them have approached the end of their useful lives. As a result, few post-consumer batteries from electric-drive vehicles are
LithiumIon Batteries are currently used due to their high energy
per unit mass
available, thus limiting the extent of battery-recycling infrastructure. As electric-drive vehicles become increasingly common, the battery- recycling market may expand.
Widespread battery recycling
would keep hazardous materials from entering the waste stream, both at
the end of a battery’s useful life and during its production. Work is now under way to develop battery-recycling processes that minimize the life-cycle impacts of using LithiumIon and
other kinds of batteries in vehicles.
Not all recycling processes are the same. Smelting processes recover basic elements or salts. These processes are operational now on a
large scale and can accept multiple kinds of batteries, including LithiumIon and nickel-metal hydride. Smelting takes place at high temperatures,
and organic materials, including
the electrolyte and carbon anodes,
are burned as fuel or reductant. The valuable metals are recovered and sent to refining so that the product
is suitable for any use. The other materials, including lithium, are contained in the slag, which is now used as an additive in concrete.
Direct Recovery is at the other extreme, some recycling processes directly recover battery-grade materials. Components are separated by a variety of physical and chemical processes, and all active materials and metals can be recovered. Direct recovery is a low-temperature process with minimal energy requirement. Intermediate Processes: The third
type of process is between the two extremes. Such processes may accept multiple kinds of batteries, unlike direct recovery, but recover materials further along the production chain than smelting does.
Separating the different kinds of battery materials is often a stumbling block in recovering high-value materials. Therefore, battery design that considers disassembly and recycling is important in order for electric-drive vehicles to succeed from a sustainability standpoint. Standardizing batteries, materials, and cell design would also make recycling easier and more cost-effective.

   55   56   57   58   59